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Cylindrical samples of high density polyethylene were tested in tension at 21 ~ C and a 
nominal strain rate of 8.5 • 10 -4 sec -a . The occurrence of necking in the centre of the 
specimens was provoked by the introduction of area defects of various sizes. The stabili- 
zation of this constriction and its propagation towards the ends of the specimens was 
studied photographically. An analytical method for the description of neck development 
is outlined, based on the use of strain and strain rate gradients. The times corresponding 
to neck init iation and stabilization are shown to be associated with critical values of the 
local strain hardening coefficient of the material. The role of area, strength and tempera- 
ture inhomogeneities in the kinetics of strain localization is discussed. A further inhomo- 
geneity term based on the axial variation of the Bridgman tr iaxial i ty factor F T is intro- 
duced. It is shown that the transverse compressive stresses associated with the shoulders 
of the neck can play a significant role in neck propagation in otherwise homogeneous 
materials. 

1. Introduction 
The stretching process is of considerable impor- 
tance in polymer engineering as it is involved in 
the sequential biaxial orientation of plastic fdms 
for magnetic tapes, as well as in the cold drawing 
of textile or industrial polymer fibres. The objec- 
tive of these techniques is to produce a final film 
or fibre of uniform cross-section in which the 
tensile strength is considerably higher than that of 
the original, unoriented polymer. Although 
necking usually takes place, leading to strain 
localization, this type of plastic instability does 
not lead to rupture, unlike the case of metals, as 
long as the stretching parameters are appropriately 
controlled. Instead, the neck stabilizes, after which 
a deformation wave is propagated away from the 
initial constriction. Each portion of the material 
reached by this wave is reduced in section by the 

natural draw ratio, which is considered to be a 
material characteristic for a given temperature and 
thermochemical history [ 1,2]. 

The influence of the structural parameters of 
the polymer on its natural draw ratio has already 
received some attention [3]. However, the kinetics 
of neck propagation have not been considered in 
detail, although analytical treatments have been 
published dealing with the flow of metals during 
analogous forming operations [4-6].  It was, 
therefore, the aim of the present investigation to 
develop a quantitative description of the initiation, 
stabilization and propagation of the area reduction 
in solid polymers. The study consisted of three 
parts: (i) first, the material coefficients were 
established under constant true strain rate con- 
ditions (this part of the investigation has already 
been published [7, 8]); (ii) second, careful obser- 
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vations were made of the neck propagation process 
during the stretching of polymer bars [9, 10]; and 
finally, (iii) computer simulations of strain locali- 
zation were performed [9, 10], using the material 
coefficients previously determined, and these were 
improved until the experimental observations were 
accurately reproduced. The details of the experi- 
mental and computational techniques will be 
reported elsewhere [10], and the present paper is 
concerned instead with a description of some of its 
more unusual features. One such feature is the 
approach used to account for the presence of 
stress triaxiality in the vicinity of cross-sectional 
gradients, and in particular the manner in which 
the well-known Bridgman correction [11] is 
adapted to allow for the presence of tranverse 
stresses at the shoulders of  the neck. Unlike the 
transverse tensile stresses generated at the root 
of the neck in the classical treatment, these are 
compressive in nature. 

2. Experimental procedure and results 
2.1. Specimen preparation 
High density polyethylene (HDPE) was chosen 
as the model semicrystalline polymer in the 
present study, in part because it has already been 
the subject of  previous investigations of  the neck- 
ing process [12-16].  The material selected was 
produced by Union Carbide Limited, Canada, and 
is available commercially as grade DFDY 6130, 
natural 77. Its physical and macromolecular 
characteristics are summarized in Table I. The 
rather high polydispersity (Mw/Mn~13) was 
introduced by the manufacturer with the view of 
conferring on the product an enhanced fracture 
toughness, even under fairly low temperature 
conditions. The material was provided in the form 
of cylindrical rods, 20 mm in diameter, which had 
been especially extruded for this study by Plastifab 
Inc. of  Montreal*. This forming process was 
preferred over injection moulding, for it minimizes 

TAB LE I Physical characteristics of the material selected 

Characteristic 

the growth of internal stresses, as well as the 
degree of molecular orientation. 

Tensile specimens were machined from these 
rods on a suitable lathe according to the shape 
depicted in Fig. 1. The gauge section was cylindri- 
cal, with an overall length Lo and a diameter Do. 
In order to provoke neck nucleation at a particular 
site, a central "geometrical defect" [17] was 
machined into each specimen of length L d = L o /  
10. Various defect amplitudes were investigated, 
which, henceforth, will be referred to in terms of 
the relative reduction of gauge length cross-section 
(Ao -- Aa)]Ao = (Dg -- D~)/D2o. The most common 
defect amplitude was 4%, but samples were also 
prepared with amplitudes varying from 0 to 11% 
[91. As discussed in more detail elsewhere [18], 
the behaviour of such geometric defects is equi- 
valent to that of specimens containing strength 
defects of equal amplitude. 

2.2, In-situ observation of stretching 
The HDPE specimens were continuously stretched 
by means of a hydraulic, closed-loop, MTS mach- 
ine equipped with an environmental chamber 
maintained at - 2 0 ,  + 21 or + 60 ~ C. Only low 
elongation rates were employed (nominal strain 
rates d N = (1/Lo)(dL/dt)  between 10 -s and 10 -2 
sec-1), in order to ensure that the observed pro- 
pagation could not be attributed to adiabatic 
heating effects [19, 20]. The evolution of the 
specimen profile during a test was followed 
photographically with the aid of a NIKKORMAT 
camera mounted facing the sample and connected 
by a lead to the chart recorder of the tensile mach- 
ine. In this way, each photograph was associated 
with a precise overall elongation, measured in the 
loaded condition. 

In order to produce sufficient data for a quan- 
titative description of the necking process, three 
types of  experiments were performed. In the first, 
the effect of  the amplitude of the geometric 

Value Unit 

Specific mass 
Melt index (ASTM D 1238, cond E) 
Average molecular weight determined by 
GPC (solvent: trichlorobenzene, 150 ~ C) 

Estimated weight per cent crystallinity 

0.956 gcm -3 
0.15 g (10 min) -1 

~/_w 192 200 g mol -I 
M n 14 500 gmo1-1 

70% 

*The authors are indebted to Mr Mario di Orio of Plastifab Inc. for providing this service. 
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Figure 1 Sample containing a central geometric defect 
used in the stretching experiments. 

defect was investigated; in the second, the strain 
rate was varied over the experimental range; and 
in the third, the influence of  temperature was 
determined. In addition, a further series of  tests 
were performed in which a deformation defect 
was introduced, so that the effect of  "hammer 
blows" [17], and of  mechanical damage to the 

gauge length could be assessed. As stated above, 
t h e  results o f  these tests will be described in 
detail elsewhere [10]. Here we will concern our- 
selves solely with those aspects of  neck propa- 
gation which were common to all the tests. 

A typical set of  specimen profiles, showing 
the evolution of  the neck, is presented in Fig. 2. 
For the present purpose, the extent o f  necking 
is characterized by the maximum true strain, i.e. 
by the strain associated with the reduction in the 
sample diameter at the minimum cross-section. 
Since the specific volume of  HDPE stays nearly 
constant during plastic deformation [15], the 
true strain is given to a good approximation by 
e ~ 2 In (Do/D), where Do and D are the initial 
(unloaded) and current (loaded) values o f  the local 
diameter. This test was carried out at room tem- 
perature (21 ~ C), at a crosshead speed of  0.033 mm 
sec -1 (@ = 8.5 X 10 .4 sec-1), on a sample con- 
taining a geometric defect of  3.96%. Prior to test- 
ing, the surface o f  each sample was marked with a 
set of  39 points, which were spaced 1 mm apart 
along the 40ram gauge length. These markers 
permitted the evolution of  the strain gradient 
X~- ~e/~xlt to be followed at different coordinates 
x along the specimen during a given tensile exper- 
iment.* 

It can be seen that the large initial reduction 
in the minimum cross-section requires about 20 mm 
of  crosshead travel (i.e. an overall elongation of  
around 50%), after which the constriction is sub- 
stantially stabilized. Following neck stabilization, 
the propagation o f  the constriction takes place 
during a further 80 mm of  crosshead travel (about 
200% o f  overall elongation), although complete 
propagation to the sample shoulders was not 
induced, as it would have required still another 
180 mm of  grip travel (i.e. about 450% of  overall 
elongation), and therefore, a total piston displace- 
ment which could not be attained in the current 
configuration of  the machine. 

2.3. Evolution of the force and neck strain 
during stretching 

The force against extension curve for this test 
(Fig. 3a) is characterized by a load maximum at 
an extension of  about 4 m m ,  which corresponds 

*Instability analyses, such as those referred to here [6, 17, 18] are generally expressed in terms of Lagrangian or 
specimen coordinates. That is, in the strain gradient ae/~xlt, x refers to a specimen coordinate which is fixed to a 
specific material element; it does not change during straining, even though the element itself is moving and changing its 
shape. This is because the true strain e is only known with resi~ect to the material cross-section of interest and not 
with respect to a cross-section fixed in laboratory space. 

1733 



Figure 2 Specimen profiles at increasing elongations in the presence of a geometric defect of 3.96%. 

to an overall elongation of 10%, followed by 
gradual "unloading" to about two-thirds of the 
maximum force at an extension of i7 ram. (42.5% 
overall elongation). Thus the period of rapid 
development of the initial neck corresponds quite 
closely with the unloading interval; this is because 
the rate of cross-section decrease at the neck is 
greater than the rate of local strengthening due to 
molecular orientation [21 ]. As will be seen below, 
this is equivalent to the condition 7neck < 1, 
where 3' = (a In a]~e)i is the normalized strain 
hardening rate at constant true strain rate [4]. 
Following stabilization of the neck, the load 
increases slowly, while the constriction is gradually 
propagated towards the ends of the sample. 
During the propagation period, "/neck ~ 1, while 
3' < 1 in the regions through which the constric- 
tion is travelling, that is in the current shoulders 
of the neck. As illustrated elsewhere [10], the 
depth of the load drop is largely dependent on 
specimen perfection, whereas the width of the 

peak (and therefore the length of time required 
to form the neck) decreases as the magnitude of 
the defect increases, and vice versa. Thus, the 
presence of  a geometric defect (or of  a "strength" 
defect due to a local temperature increase, for 
example), aids the process of local orientation, 
in contrast to the case of metal forming, where 
appreciable area or strength defects hinder material 
forrnability [22]. 

The evolution of the neck diameter during 
stretching is illustrated in Fig. 3b, together with 
the local value of the draw ratio, I/lo, where l 
is the current distance between markers situated 
in the vicinity of the neck, and lo = 1 mm is the 
initial separation of the markers. It is evident that, 
although most of the neck strain is produced 
during the first 20mm of crosshead movement 
(about 50% overall elongation), the neck continues 
to deform during the propagation interval, so that 
the limiting draw ratio of about 8 is only attained 
gradually, and not at the moment of "neck 
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Figure 3 (a) Experimental force-extension curve for the HDPE specimen of Fig. 2. (b) Evolution of the minimum 
diameter during stretching and of the normalized distance between two consecutive markers 1/l o. The measurements 
were taken in the central portion of the sample, which contained an area defect of 3.96. 

stabilization". Thus, the natural draw ratio is not 
a real material constant, but  can be seen to be an 
approximate parameter. Moreover, although the 
rate o f  increase in draw ratio diminishes to a low 
value at AL = 20ram, it begins to decrease much 
earlier, namely, at AL = 16mm, where there is a 
point of  inflection. A similar inflection point is 
apparent somewhat earlier in the Dneck against 
AL curve. These points of  inflexion are not 
attained simultaneously, although they both 
correspond to the onset of  neck stabilization, 
because the definition of  the onset of  stabiliz- 
ation depends on whether it is the local diameter 
or elongation which is chosen for reference 

[181. 
The matter of  neck stabilization can also be 

related to a comparison of  the true strains in 
neighbouring regions of  the specimen. Some strain 
data calculated from the instantaneous diameters 

at the various markers are illustrated in Fig. 4. 
Here it can be seen that a neck strain of  about 1.8 
to 2.0 is first reached at marker 20 at the centre of  
the defect, and then at markers 19 and 18, which 
are still within the original geometric defect. The 
slices situated in the unreduced portion of  the 
sample (i.e. numbers 14 to 17) are successively 
attained by the deformation wave associated with 
the propagation of  the constriction, but  only after 
much larger specimen extensions. It is of  interest 
that, even at the end of  the experiment, slices 1 to 
13, i.e. those between the neck and the specimen 
ends, have not been "drawn" to their limiting 
size, even though they have cross-sections (and 
therefore apparent strengths) equal to those of  
slices 14 to 17. A possible explanation of  this 
anomaly will be advanced below, after a more 
general consideration of  the factors controlling 
neck growth and stabilization. 
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Figure 4 Evolution of the local trae strain 
during stretching at different points along the 
axis of the tensile bar. The markers were 
originally 1 mm apart, with number 1 located 
at the uppermost end of the specimen in Fig. 2, 
and number 20 located near the centre, within 
the central region of reduced cross-section. 
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3. Analytical description of the necking 
process in solid polymers 

3.1. Development of strain gradients 
The factors determining the rate of  development 
of  strain and strain rate gradients during the defor- 
mation of metals are now fairly well understood 
[6, 17, 18 ,23 ,  24]. These depend in part on the 
type of  constitutive law that applies to the 
material under consideration. The simplest 
approach is the one valid for a material obeying 
a relation of the type a(e, ~, T) = f (e ,  T) x g(~, T) 
so that, for a given temperature,  the influences of  
strain and strain rate are expressed separately in 
a multiplicative way. In such a substance, the nor- 
malized strain hardening coefficient 3' = (a in o/  
Oe)i is independent of  the strain rate ~ and 
depends only on the accumulated strain e. Simi- 
larly, the strain rate sensitivity coefficient m = 
(a In o/a In e)e is independent o f  the strain. As 
demonstrated earlier [7, 8], the plastic behaviour 
of  high density polyethylene can be fitted to a 
first approximation by the following equation: 

ct(e, ~) = K exp (h e 2) b m . (1) 

Here  the three adjustable coefficients are given by 
K = 4 6 M P a ,  h = 0 . 4 1  and m = 0 . 0 7 .  With this 
constitutive relation, the following 3' = 3'(e) 
relation is obtained 

3' = 2 h e. (2)  

Although the above expression was chosen for 
simplicity, it is evident from the experimental 
3' against e curve in Fig. 5 that the description of  
the dependence of  3' on strain can be improved by 
the addition o f  an extra term: 

3' = 3'0 + 2 h'  e. (3) 

Allowance must also be made for the short period 
of  viscoelastic flow at the commencement  of  
straining. Although this behaviour is rate depen- 
dent, and therefore in conflict-with the assumed 
strain dependence f (e ,  7) introduced above, the 
rate dependence will be neglected here as not 
being of  primary importance with respect to the 
process of  neck propagation under investigation. 
The full stress/strain relation, including the visco- 
elastic component ,  is then given by:  

a = K V ( e )  exp (he 2) ~m (4) 

where the viscoelastic term V(e) is defined as: 

v(e)= [1 - exp ( -  e/ev)] (5) 

where e v is about 0.033 in the present case. As 
long as e v is considered as independent of  the 
strain rate, the analyses developed for the defor- 
mation of  metals can be applied to polymer stret- 
ching. Then the strain rate gradient X ' =  (a in ~/ 
ax)t  that is present at a particular site x and time 
t can be specified in terms of the strain rate sen- 
sitivity rn and the current value of  3' by  the relation 
[17]: 

m~.' = (1 -- 3'))t --  (d In A o/dx). (6) 

Here ~ is the strain gradient (ae/ax)t ,  and d lnAo/  
dx is the gradient in the natural logarithm of  the 
cross-sectional area prior to the initiation of  strain- 
ing. By convention, the area gradient term d In Ao/ 
dx is generally taken to be negative so that the 
initial values of  )t' in different parts o f  the sample 
(i.e. when X = 0) are normally positive. These lead 
in turn to the development of  positive values of)t at 
large strains, as depicted in Fig. 6 for three samples 
o f  the material o f  Fig. 5 containing defect gradients 
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depend on the magnitude of the initial 
geometric defect. 

from 2.0 x 10 .4 to 6.0 x 10-4mm -1. The increase 
in X' corresponds to the initiation and develop- 
ment o f  a well formed neck, as can be verified 
by comparing Figs. 6 and 7. (In Fig. 7, the data of  
Fig. 4 have been replotted in terms of  X -~ Ae/Ax 
against g, where Ae represents the strain differences 
between neighbouring slices and g is the mean 
strain in the two slices being compared.) 

It should be noted that X' takes the value 
(--1/m)(dlnAo/dx)  (Fig. 6) at the commence- 
ment o f  straining when X = 0, and also whenever 
the strain hardening coefficient 3' = 1 (i.e. at the 
first and second Considbre strains eel and ee2, Fig. 
5). Thus three stages can readily be distinguished 

in the growth and decay of  the strain gradient X. 
In the first, which extends over the first few per 
cent of  overall strain until the maximum load is 
attained (i.e. until the first Consid6re strain), 
X grows slowly, but at a rate which is generally 
not perceptible to the naked eye. In the second, 
which extends from the first to the second Con- 
sid~re strain, X increases rapidly because X' assumes 
fairly high values (i.e. X' >> (-- 1/m)(d lnAo/dx))  
over much of  this interval. This corresponds to the 
period o f  neck formation at a given site. In the 
third, 7 > 1 in the vicinity of  the original neck, 
so that X' decreases to less than (-- 1/m) (d lnAo/  
dx) and actually becomes negative (see Figs. 6 
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Figure 7 Dependence of X ~ Ae/Ax on 
the local strain e determined from the 
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and 7). Under these conditions, X decreases 
gradually until it is again hardly perceptible 
visually. This corresponds to the interval of neck 
stabilization and propagation. During stretching, 
this is when the original constriction decreases 
in diameter only slowly and when the elongation 
associated with the natural draw ratio is gradually 
transmitted along the sample axis. 

It is clear from Equation 6 that, for given values 
of  3' and d lnA0/dx (i.e. for a particular shape of 
a against e curve and area gradient), the strain rate 
gradient X' increases in inverse proportion to the 
rate sensitivity m. Thus the "draw" is the more 
localized the lower is the value of m. As a result, 
once again in contrast to the behaviour of metals 
(where high m promotes good formability), in 
polymers, good drawability implies the possession 
of a low rate sensitivity. 

In Fig. 7, there was a clear difference in the 
behaviour of the strain gradient X relating to neck 
slices (i) 19 and 20, 18 and 19; (ii) 17 and 18; and 
(iii) 16 and 17, 15 and 16, etc. Slices 18, 19 and 
20 were located within the original area defect, 
so they all passed through the "draw" at about 
the same time; so, the strain gradient X = Ae/ 
Ax measured from the pairs of slices 19 and 20, 
and 18 and 19 increased rather slowly up to 
moderate values of the order of 0.4 and 0.8, 
respectively. By contrast, slices 17 and 18, being 
located the first outside and the second inside 
the defect, experienced the draw at significantly 
different intervals of time, and the value of X was, 
therefore, considerably higher in the ascending 
stage of the curve for these two sections. We turn 
now to slices 16 and 17, 15 and 16, etc., which 
were all nominally machined to the same diameter 
Do. They could, accordingly, be expected to pass 
through the draw simultaneously. Instead, as is 
evident from Fig. 7, X = Ae/Ax was almost as 
high in these parts of the sample as in slices 17 and 
18 (only a slight difference is noticed' near the 
origin of the graph). It is evident, therefore, that 
the factor responsible for the propagation of the 
draw from slice to slice of the uniform part of the 
sample is missing from Equation 6 and remains to 
be introduced. As will be demonstrated below, this 
factor may be related to the transverse compressive 
stresses generated in the shoulders of the neck. 
One possible method for the incorporation of such 
stresses will now be considered, after the addition 
of a number of further terms to the strain rate 
gradient relationship. 

3.2. Effect on the necking process of the 
presence of strength and temperature 
gradients 

Although Equation 6 was originally developed to 
explain the influence of geometric and "defor- 
mation" defects [17], it can be readily modified 
so as to describe the effect of other kinds of 
sample non-uniformities. For example, when the 
strength of the material is specified by a simple 
constitutive relation of the type considered here, 
which is of the form o = K 6rn f(e), and when the 
strength coefficient K = K(x) varies along the 
specimen axis, the term - - d l n K / d x  can be 
added to account for the presence of such "strength 
defects" [18]. Such a term is formally similar to 
the area gradient term discussed above. It is of 
particular interest when the area gradient d in Ao/ 
dx is very small or non-existent. Under such con- 
ditions, necking is initiated where the strength of 
the material is slightly deficient (e.g. 0.5% less) 
compared to the bulk of the sample. This can arise 
due to small local differences in the volume frac- 
tion of crystallinity, the mean molecular weight, 
etc. 

In a similar manner, it is possible to allow for 
the presence or development of temperature 
gradients, as suggested by Ferron [25, 26]. This is 
done by the addition of the term: 

_ / d l n o ]  ~t~-x) (7) 
\ OT ]e,~ t 

where (0 in o/OT)e ,~ is the temperature-dependence 
of the true stress (normally negative), and (OT/ 
3x)t is the temperature gradient involved in 
passing from the "normal" towards the overheated 
part of the specimen. The temperature gradient 
term is of particular importance when no other 
inhomogeneities are present. It is normally associ- 
ated with the occurrence of adiabatic heating in 
conjunction with a non-uniform distribution of 
heat sinks. Once a local temperature gradient is 
developed in a solid polymer, it is readily propa- 
gated to the ends of a specimen, carrying with it 
the strain localization associated with the draw 
[27-29]. 

4. Effect of stress triaxiality on neck 
propagation 

4.1. The effective stress and the Bridgman 
tria• factor 

The analysis described in Section 3 above is 
rigorously valid only when the state of stress is 
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uniaxial, that is when no radial or circumferential 
stresses are developed in the stretched bar. This 
assumption is reasonably valid as long as the 
tensile deformation is homogeneous and the 
profile of  the specimen remains fairly uniform. 
Conversely, if the stress tensor deviates from a 
uniaxial one, so that finite radial and circumferen- 
tial stresses (or and o0, respectively) are induced 
in addition to the axial stress Ox, the plastic 
behaviour of  the specimen must be described 
instead in terms of the local effective stress %f~ 
and effective strain eefr [30]. According to this 
concept, %re is numerically equal to that uniaxial 
stress which would produce the same effective 
strain rate as the one generated by the complex 
stress field. The rate of  plastic deformation is 
increased by the triaxiality effect if the transverse 
stresses are compressive and conversely decreased 
if the hydrostatic term in tensile. When an axially 
symmetric specimen containing a defect is 
deformed in tension beyond the onset of  strain 
localization, the profile becomes highly non- 
uniform and tranverse components of  stress are 
developed. Since these components  usually vary 
across a given cross-section, it is useful to charac- 
terize the overall effect of  triaxiality in the section 
by the mean effective stress Oe----fi. Following 
Bridgman [11 ], we will henceforth denote by  the 
term "triaxiallty factor" the ratio FT = ~eff/Ox, 
where the mean axial stress, 0x = FlA. 

In a tensile specimen with a uniform cross- 
section the triaxiality factor is equal to 1. If, on 
the other hand, the specimen profile is curved, 
FT is less than or greater than 1 depending on 
whether the external surface of the sample is 
concave or convex, respectively (see Fig. 8). Note 
that,  following earlier authors [31-34] ,  the 
curvature of  the individual field of  force lines is 
o f  the same sign as that of  the outer profile. 
Thus, in the externally concave region, the stresses 
can only be balanced if or and o 0 are bothposit ive,  
so that F T < 1. Conversely, in the externally 
convex region which is of  greater interest to the 
present discussion, F T > 1. 

4,2. Dependence of  F T on the local 
c u rva tu re 

To date, no simple analytical expression for FT 
has been proposed which is valid for arbitrary 
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Figure 8 Schematic representation of the transverse 
stresses generated in a sample of varying cross-section. 
Note that b -g~>~x(FT>l  ) in regions of negative 
curvature. 

axi-symmetric profiles. This is because F T depends 
in a complex way, not only on the first and second 
derivatives of  the profile radius a(x'),* but also on 
the plastic properties of  the material [11]. Never- 
theless, several attempts at expressing the effect 
of  triaxiality have been made for the case where 
the ratio aiR (of  the specimen radius a to the 
radius of  curvature of  the profile R)  is small 
[11, 33, 35]. Among these, the approach of  
Bridgman [11] is most relevant to the current 
study. It was applied to the transverse plane of  
symmetry  at the neck of  a tensile bar, where 
d a / d x ' =  0, and where the radius of  curvature R,  
given by R = 1/(d2a/dx '2) when d a / d x ' =  0, is 
positive. Under these conditions, F T can be 
expressed as follows: 

F T = 1/[1 + (2R/a)] In [1 + (a/2R)] (8) 

It  can be readily shown [9] that the original 
assumptions of  Bridgman remain valid for sym- 
metrically bulged profiles (as well as symmetrically 
necked profiles) as long as a negative value is 
attribued to R.  By extension, the formula also 
applies to any section in which the derivative 
da/dx'  is zero, e.g. in the uniform parts of  the 
bar. 

The dependence of  the Bridgman triaxiality 

*The triaxiality effects depend on the current shape of the sample in Eulerian or laboratory space. They must therefore 
be evaluated in these coordinates, which are distinguished here from the former by the use of a primed letter (x') as 
opposed to a simple x. 

1739 



factor F T on the ratio air is illustrated in Fig. 9 
for both negative as well as positive values of aiR. 
For very small values of (a/R), that is for a nearly 
uniaxial state of stress, the logarithmic relation 
for F T given by Equation 8 can be developed as a 
power series in a/R, the first two terms of which 
lead to 

F T = [1 -- (a/4R)] (9) 

It is of interest to note that this expression is the 
approximate equivalent of the earlier triaxiality 
correction proposed by Siebel [35] as 

F T = 1/[1 + (al4R)] (10) 

The Bridgman formulation can also be compared 
with that of Hutchinson and Obrecht [36], which 
expresses the influence of the wavelength of a 
small sinusoidal fluctuation in the external profile 
on the rate of strain localization in tension. They 
found that the difference in the rate of decrease 
in cross-sectional area at the minimum and maxi- 
mum diameters is less than expected from a simple 
uniaxial analysis. When converted into the present 
notation, that is, on reinterpretation in terms of 
(a/R) ratios and of a triaxiality factor a--~-/b-~, their 
result also tends to the value [1--(a/4R)] for 
small (a/R), giving additional support to the con- 
cept of extending the Bridgman analysis to negative 
values of (a/R). 

For the present purpose, the validity of 
Equation 8 is restricted to small values of the 
(a/R) ratio, namely laiR I< 1, by virtue of an 
extension of St Venant's principle [37]. That is 
we adopt the view here that the effect o f  a 
"surface irregularity", such as positive or negative 
curvature, does not extend in a significant way 
beyond a depth about equal to some geometric 

characteristic of the irregularity, in this case the 
radius of curvature. 

In the experimental profiles shown in Fig. 2 for 
the HDPE rod stretched at room temperature, 
the ratio aiR fell in the range --0.5 to 0.2, and 
therefore within the limitations imposed by the 
"surface effects". Furthermore, by means of 
finite element calculations, it has been shown [38] 
that Equation 8 is a reasonable approximation of 
the effect of triaxiality on the effective stress, at 
least in regions of symmetry. It is not immediately 
apparent, however, that Equation 8 continues to 
apply in regions where the profile or area gradient 
is not zero. In such parts of the sample, the 
expression for F T could include, for example, 
terms in (da/dx'). Support for the view that the 
Bridgrnan relation is of at least approximate 
validity under these conditions can be taken from 
the work of Argon et al. [39], who employed a 
finite element method to show that the expressions 
for a= and a00 given by the Bridgman analysis 
continue to apply along the axis of symmetry. 
From their work, it can be concluded that 
Equation 8 is a good first approximation for the 
actual triaxiality factor, even when da/dx ' r  0. 
Somewhat similar conclusions were drawn by 
Ghosh [31] for the case of metal sheets which 
experience tensile necking. 

4.3. Influence of the tr iaxial i ty factor on 
kinetics of plastic strain localization 

In the derivation of the differential equation 
(Equation 6) relating the strain and strain rate 
gradients to the material coefficients and non- 
uniformities, the relevant stress was the uniaxial 
tensile stress, as is normally the case for the so- 
called "long wavelength" approximations [36]. 
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Figure 9 Dependence of Bridgman triaxiality 
correction factor F T o n  (a/R). The exten- 
sion of Bridgman!s relation for F T into the 
region of negative (a/R) is limited to (a/R) 
/> - -  1 because of St. Venant's principle [37]. 
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However, in the present instance, the tensile 
force per unit of current cross-section must be 
expressed in terms of the longitudinal component 
a x of the axially oriented principal stress. In what 
follows, we will not be concerned with the radial 
variation in this quantity, but consider only its 
average value, 0x. Recalling that 0x = Ze--~-/~FT, 
we can represent the effect of differences in F T 
along the axis of an otherwise uniform sample, 
for example, by the expression: 

6 inO x = 5 InB'e-ff--8 InFT (11) 

In order to extend the instability analysis to 
include the effect of triaxial stresses, the following 
assumptions will now prove useful: 

(i) The increment in the mean effective strain 
de~- is taken as approximately equal to the incre- 
ment in the mean longitudinal strain dr 

(ii) Although the strain hardening (and rate 
sensitivity) properties of the material depend on 
the mean effective strain (and mean effective 
strain rate), these can be deduced to a sufficient 
degree of accuracy from the mean longitudinal 
strains (and strain rates). 

Under these conditions, Equation 6 can be 
relaced by: 

d lnAo + t a  lnFT 1 
mX' = (1--7)?,  dx \ 3x ] 

(12) 

From the above relation, it can be seen that the 
triaxiality term (a In Ft/ax)t  is formally equivalent 
to the other types of non-uniformities considered 
in turn above*. The magnitude and therefore the 
importance of this term can be estimated from 
Fig. 9. For this purpose we consider two neigh- 
bouring regions of equal cross-section, one of 
which is of uniform radius (da/dx'= 0; aiR = 0; 
F T = 1.0), and the other of which has a small 
negative curvature (e.g. air  = - - 0 . 1 2 ; F T  = 1.04). 
It is evident that 8 In F T in this instance is equi- 
valent to an area defect 8 In Ao of 4%. The validity 
of this simple estimate is supported by the photo- 
graphs of Fig. 2, and by the local strain curves of 
Fig. 4, from which it can be seen that the delay 
in the propagation of the constriction from 
"slice" to "slice" of the uniform part of the speci- 
men is equivalent to the presence of an area 
defect of something less than 5%. 

Thus the triaxiality term in Equation 12 pro- 
vides a ready explanation for the observation that 
a neck, once formed, generally propagates in an 
orderly fashion towards the ends of a polymer 
specimen, instead of being reinitiated at small 
"strength" defects along the so-called "uniform" 
portion of the unconstricted parts of the speci- 
men. This is because the negative curvature at the 
ends of such regions has a large enough effect, 
according to the instability analysis, to provoke 
deformation at this location, rather than in the 
less inhomogeneous regions of the sample. 

5. Conclusions 
1. The times associated with neck initiation and 

stabilization in high density polyethylene corres- 
pond to moments when the normalized strain 
hardening coefficient 7 passes through the critical 
value 3' = 1. 

2. The progress of strain localization in solid 
polymers can be quantified in terms of the local 
values of the strain and strain rate gradients. 
According to this treatment, the rapidity of neck 
development is inversely proportional to the rate 
sensitivity m of the material. Also playing a role 
in the necking behaviour are the various types of 
defect present, which include non-uniformities in 
cross-sectional area, intrinsic strength, local tem- 
perature, and prestrain history. These inhomo- 
geneities are responsible for the site of the first 
localization, and also contribute to the rate of 
its stabilization. 

3. The propagation of a constriction along an 
otherwise uniform section of the sample can be 
explained in terms of the transverse compressive 
stresses developed at the current shoulders of the 
neck. The effect of  these triaxial stresses can be 
quantified in terms of a modified Bridgman cor- 
rection factor, which is seen to be valid in locations 
of negative as well as positive curvature. In the 
presence of variations in cross-section, the gradient 
in the Bridgman triaxiality factor must be added 
to the strain localization relationship and plays 
a role analogous to that of an area or strength 
defect. 
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